PHS Scientific House

International Journal of Pharma Research and Health Sciences

Available online at www.pharmahealthsciences.net

Original Article

Phytochemical Screening and Antibacterial Activity of *Chloroxylon swietenia* DC.

Ravishankar B, Riaz Mahmood^{*}, V Krishna, Vinay Kumar NM, Sudhesh L Shastri Department of Biotechnology, Kuvempu University, Shankaraghatta, Shimoga-577 451, Karnataka, India.

ARTICLE INFO

Received: 29 Nov 2017 Accepted: 17 Dec 2017

Corresponding author *

ravishankarb90@gmail.com

Kuvempu University, Shankaraghatta,

Shimoga-577 451, Karnataka, India. E Mail: riaz_sultan@yahoo.com,

Dr. Riaz Mahmood Department of Biotechnology, ABSTRACT

Objective: Chloroxylon swietenia traditionally used as antimicrobial, antifertility, analgesic, insecticidal, antifeedant in traditional medicine system hence the present work is conducted to evaluate antibacterial activity. Experimental Approach: Qualitative and quantitate phytochemical screening and antibacterial properties of Chloroxylonswietenia leaves, stem bark and seeds extract isolated using the solvents viz: pet ether, chloroform and ethanol by agar well plate method and MIC by resozurin dye method. Findings: The tree Chloroxylon swietenia possess alkaloids, terpenoids, tannins and phenolic compounds, and cardiac glycosides. The quantitative total phenolic content found at 22µg/mg in seed ethanolic extract, total alkaloids17.32µg/mg in stem bark ethanol extract and total terpenoids 47.332µg/mg in leaf pet ether extract. The plant extracts showed appreciable antibacterial activity at a concentration of 80mg/mL against selected bacterial strains. Seed chloroform extract presented17.67±0.33mm inhibition zone and MIC at20.83µg against S aureus. Seed pet ether extract showed16.67±0.33mm inhibition zone and MIC at33.33 µg against K. pneumonia, while as, stem bark chloroform extract has shown12.33±0.33mm inhibition zone and MIC at133.33µgagainst V. cholerae, seed pet ether extract revealed19.67±0.33 mm inhibition zone and MIC at 20.83µg towards S. pneumonia, P. aeruginosa, seed ethanol extract effect was valued at11.67±0.33mminhibitionzone and MIC at133.33 µg on its action to S. typhi. Discussion: The plant Chloroxylon swietenia containing beneficial phytochemical profile, among all extracts seed pet ether and chloroform extracts showed good antibacterial activity comparatively with other extracts and displayed prominent results on comparison with standard streptomycin. Conclusion: The results concluded that Chloroxylon swietenia is possessing important secondary metabolites that have a significant antibacterial property. Keywords: Chloroxylon Swietenia, Phytochemical, Agar Well Plate, Antibacterial.

1. INTRODUCTION

several hundred genera of medicinal plants producing potential drugs for the benefit of primary health care since thousands of years. The plants produce bioactive secondary metabolites like alkaloids, flavonoids, tannins, phenolic compounds, terpenoids, glycosides that hold various pharmacological properties¹.WHO reports that 80% of world population using traditional medicine which are being prepared from plant extracts. Microorganisms create huge

All over the world people preparing herbal medicine using

IIIIIIII© International Journal of Pharma Research and Health Sciences. All rights reserved

Int J Pharma Res Health Sci. 2017; 5 (6): 2002-07

clinical problems due to indiscriminate use of antibiotics and have become resistant to antibiotics. Antibiotics also create harmful effect on host such as allergic reaction, hypersensitivity, weakening of gut etc. This leads to search alternative medicine for the treatment of microbial diseases. Analysis of medicinal plants for antimicrobial drugs is one of such approaches².

Plant medicines have often not been tested systematically, but have come into use informally over the centuries. By 2007, clinical trials had demonstrated potentially useful activity in nearly 16% of herbal medicines; there was limited *in vitro* or *in vivo* evidence for roughly half the medicines; there was only phytochemical evidence for around 20%; 0.5% were allergenic or toxic; and some 12% not yet been studied scientifically³.

Chloroxylon swietenia DC (East Indian satinwood) belongs to family Rutaceae commonly known as Cylonsatin wood or East Indian satinwood native to South India and Srilanka. In India this plant is commonly found in dry deciduous forests, tree is having pinnate leaves, straight cylindrical stem⁴. It is commonly used as antimicrobial, antifertility, analgesic, insecticidal, antifeedant activities. Leaves are used to treat worm infected wounds, fungal infected skin and also to treat inflammation, rheumatism. The plant root and bark possess astringent property⁵.On the basis of available literature, the leaves and bark essential oils having the potential inhibiting microbial activities⁶. The leaves, stem bark and seeds using the solvent petroleum ether, chloroform and ethanol have not been exposed yet and need to be evaluated which may yield a novel phytoconstituent for the prevention of infections caused by clinical pathogens. The present study was conducted on preliminary phytochemical analysis and the antibacterial potential of Chloroxylon swietenia DC.

2. MATERIALS AND METHODS

Plant Material Collection and Extraction

The leaves and stem bark of Chloroxylonswietenia were collected in the month of November and December. Seeds were collected in the month of April from Shimoga district, Karnataka, India. The plant was taxonomically identified and authenticated by a Botanist Dr. Y. L. Krishnamurthy, Professor, Post Graduate Studies and Research in Botany, Kuvempu University, Shimoga, Karnataka. The collected plant material was primarily washed with tap water and subsequently with distilled water. The plant material was air dried under shade and then powdered with a mechanical blender to obtain a coarse powder. The powder was subjected for extraction with different solvents viz: petroleum ether, chloroform and ethanol using soxhlet apparatus. Extraction process was carried out till the completion of 24 cycles for individual solvent. The solvent was completely removed by rotary vacuum evaporator. The extract was stored in a vacuum desiccator.

Preliminary phytochemical screening Qualitative Analysis Phytochemical screening of *Chloroxylonswietenia* extracts, was performed to detect the presence of alkaloids, flavonoids, terpenoids, saponins, tannins, phenolic compounds and glycosides using standard procedures^{7,8}.

Quantitative Analysis

Quantitate analysis of all extracts was carried out for determination of total phenolics, alkaloid and terpenoids.

Determination of Total Phenolic Content

Total phenol content of extracts was measured by the Folin–Ciocalteu method⁹. 1 ml of each extract ($100\mu g$, $200\mu g$, $300\mu g$) was mixed with Folin–Ciocalteu reagent (2 ml) (diluted 1:10, v/v) and2 ml of sodium carbonate (7.5%, w/v) was added then mixed, the reaction mixtures was maintained for 90 min at room temperature and absorbance was measured against the blank at 750 nm using spectrophotometer. Total phenolic content of the extracts was determined using Gallic acid standard.

Total Alkaloid Content Determination

1gm of plant extract was dissolved in 40ml 10% acetic acid in ethanol allowed to stand for 4hrs by covering tightly, then filtered and filtrate was concentrated on water bath until total volume became 1/4thof the original and ammonium hydroxide was added drop wise until precipitation of extract completes. Precipitate was collected and washed with dilute ammonium hydroxide then filtered, the residue was dried and weighed¹⁰.

Total Terpenoids Content Determination

Total terpenoid content was determined by soaking 100mg of plant extract in ethanol for about 24hrs, then filtered the extract and filtrate was fractioned with petroleum ether using separating funnel. The extract separated in petroleum ether was considered as total terpenoids¹¹.

Antibacterial Activity

Bacterial Strains

Gram negative bacterial strains (PA) *Pseudomonas aeruginosa*, (KP) *Klebsiella pneumonia*, (ST) *Salmonella typhi* and Gram positive bacterial strains(SP) *Streptococcus pneumonia*, (SA) *Staphylococcus aureus*, (VC) vibrio *cholerae* wereobtained fromShimoga Institute of Medical Sciences, Shimoga.Karnataka, Indiafor evaluating antibacterial activity.

Agar Well Diffusion Method

The plant extracts dissolved in 10% DMSO were individually tested against a panel of clinically pathogenic microbial strains selected. A loop full of Bacterial strains were sub- cultured in a conical flask and incubated at 37° C for 24 h in nutrient broth media day before conducting the experiment. 100µl of bacterial culture (10^{5} cells/ml) was inoculated on the nutrient agar culture plates in order to determine their viability by making wells of 6 mm diameter for loading the plant extracts of 20µl with different concentrations and standard streptomycin 10µl (20μ g) into respected wells and were kept for incubation at 37° c. After 24h zone of inhibition was recorded^{12,13}.

MIC by Micro Titer Plate Method

Int J Pharma Res Health Sci. 2017; 5 (6): 2002-07

This method was used to determine the minimum inhibitory concentration (MIC) of the plant extracts using modified resazurin microtitre plate assay in nutrient broth (NB) as specified by National Committee for Clinical Laboratory Standard (NCCLS, 1998). In this assay, 50µl of nutrient broth was added to all the wells under sterile conditions. Subsequently,50µl of each extract at a concentration of 400 µg was added into six wells of first row in the plate then continued with the serial dilution down the column to get concentrations200,100,50,25,12.5,6.25,3.125µg/50µl.Then, wells of first row were inoculated by $10\mu l$ (5×10⁶ cfu/ml) of different microbial strains followed by the addition of 10µ1 (0.015 %) resazurin dye to all the wells as an indicator. Seventh well of first row was used as reference positive control (load streptomycin instead of extract), eighth well as negative control (without extract) and another one column as normal control (only media and dye without strains)¹⁴. Thereafter, 30µl of iso-sensitized broth to all the wells and covered with clean wrap to avoid the dehydration of bacteria, individual concentration was maintained in triplicates. plates were incubated at 37°c for 24 h, later change of the color was observed, the conversion of purple to pink color indicated the microbial growth, whereas, no change of color indicates inhibition of microbial growth. The results were expressed by taking mean from the lowest concentration at which no color change appeared was taken as the MIC value^{15,16}. the activity index is calculated as per the following formula¹⁷.

AI (Activity Index) = ZI of Test/ZI of Standard

Statistical Analysis

The analysis of variance (ANOVA) was performed using ezANOVA (version 0.98) software and Microsoft excel to determine the mean and standard deviation of zone of inhibition values between the extracts against bacterial culture¹⁸.

3. RESULTS

Preliminary Phytochemical Screening

The Plant crude extracts were subjected for Preliminary qualitative and quantitative analysis for the detection of various phytocomponents. The results showed that alkaloids, phenolic compounds and terpenoids are present in all extracts. whereas, cardiac glycosides are absent in LPE and BPE. It is also found that flavonoids and saponins are completely absent in all the extracts screened results are shown in Table 1. The quantified total phenolics, alkaloids and terpenoids contents of Chloroxylon swietenia extracts have shown that terpenoid content is found to be more in the selected plant. The seed ethanolic extract has more phenolic content i.e up to 22µg/mg whereas, alkaloid content 17.32µg/mg in stem bark ethanol extract similarly leaf pet ether extract showed more terpenoid content of 47.32µg/mg. The results are depicted in Fig. 1. The above results indicate that ethanol extracts contain more amount of phenolics and alkaloids compared to pet ether and chloroform extracts whereas, the total terpenoids content is more in pet ether and chloroform extracts compared to ethanol extracts.

Antibacterial Activity and MIC by Micro Titer Plate Method

The antibacterial activity of all the extracts has been observed against all the bacterial strains selected. The zone of inhibition is presented in table 2 while as, activity index values are tabulated in table 3. Comparatively the chloroform and pet ether extracts showed significant inhibition for selected pathogenic bacterial strains. The test was conducted in triplicate and results presented by calculating the mean of the zone of inhibition. Zone of Inhibition of standard Streptomycin against S. aureus, K. pneumonia, V. cholerae, S. pneumonia, P. aeruginosa and S. tvphi is calculated at 29.67±0.33, 27.67±0.33, 28.67±0.33, 29.00±0.58,28.33±0.33 and 27.67±0.33 respectively.Seed chloroform extract showed17.67±0.33mm inhibition zone and MIC value has been calculated at $20.83\mu g$ against S. aureus. Seed pet ether extract showed16.67±0.33mm inhibition zone and MIC value at 33.33 μ g against K. pneumonia, while as, stem bark chloroform extract has shown12.33±0.33mm inhibition zone and MIC valuetabulated at 133.33µg against V. cholerae, seed pet ether extract revealed19.67±0.33 mm inhibition zone and MIC value observed is at 20.83µg towards S. pneumonia, P. aeruginosa, seed ethanol extract effect was valued at11.67±0.33mm inhibition zone and its MIC value has been reported at 133.33 µg on its action to S. typhi. The MIC values are graphically represented in Fig. 2.

4. DISCUSSION

The medicinal value and biological activity of plants are usually being attributed to the presence of phytochemicals, whose composition is totally dependent on geographical and environmental factors¹⁹. People prefer medicinal plants for the treatment of various diseases due to the negligible harmful side effects. Synthetic drugs are known to cause side effects such as rashes, stomach pain etc. The plants belonging to genus Swietenia that possess good antibacterial activity are Swietenia macrophylla and Swietenia mahagoni^{20,21}. The plant Chloroxylon sweitenia selected in current investigation is a traditional medicinal plant is traditionally being used for the cure of worm infected wounds, fungal infected skin and also to treat inflammation and rheumatism⁵. As per the literature survey no evidence is found on antibacterial activity from leaves, stem bark and seed extracts of pet ether, chloroform and ethanol of this plant.

In the present study, preliminary qualitative and quantitative analysis of the plant extracts has been done. Subsequently, the antibacterial efficacy has been tested by employing standard protocols. The qualitative phytochemical screening of petroleum ether, chloroform and ethanol extracts of *Chloroxylon switenia* from leaves, stem bark and seeds indicated the presence alkaloids, terpenoids, phenolic

Int J Pharma Res Health Sci. 2017; 5 (6): 2002-07

compounds and tannins in all extracts, whereas, cardiac glycosides are absent in LPE and SBPE found to be present in all other extracts. It is also found that flavonoids and saponins are completely absent in all the extracts screened. Among these groups alkaloids and terpenoids are the major secondary metabolites which have a substantial role in treating various diseases²². Therefore, the presence of these groups in *Chloroxylon switenia* is considerable prospect of its significant role in pharmacology specifically can act against pathogenic microorganisms. Additionally, presence of important groups in this plant viz: phenolic compounds, cardiac glycosides, and tannins already been proved to be prominent in pharmacological studies encouraged to explore this plant for challenging public health issues.

The plant extracts of Chloroxylon swietenia have been undertaken to determine the amount of prominent bioactive groups like total phenolics, alkaloids and terpenoids present in this plant. The seed ethanolic extract has more phenolic content i.e. up to 22µg/mg whereas, alkaloid content was observed at concentration of 17.32µg/mg in stem bark ethanol extract, whereas, leaf pet ether extract showed more terpenoid content of 47.32µg/mg. The above results indicate that ethanol extracts of all plant parts contain more amount of phenolics and alkaloids compared to pet ether and chloroform extracts, whereas, the total terpenoids content is more in pet ether and chloroform extracts compared to ethanol extracts. The antibacterial activity of all the extracts has been observed against all the bacterial strains selected. The test was conducted in triplicate and results are presented by calculating the mean of the zone of inhibition. Seed chloroform extract showed17.67±0.33mm inhibition zone and MIC value has been calculated at $20.83\mu g$ against S. aureus. Seed pet ether extract showed16.67±0.33mm inhibition zone and MIC value at 33.33 μ g against K. pneumonia, while as, stem bark chloroform extract has shown 12.33±0.33mm inhibition zone and MIC value tabulated at 133.33µg against V. cholerae, seed pet ether extract revealed19.67±0.33 mm inhibition zone and MIC value observed is at 20.83µg towards S. pneumonia and P. aeruginosa. The effect of seed ethanol extract is found to be 11.67±0.33mm of inhibition zone and its MIC value has been reported to be 133.33 µg on its action against S. typhi. The calculated activity index of SPE showed good AI of 0.602, 0.678 and 0.694 against K. pneumonia, S. pneumonia and P. aeruginos are spectively. Similarly, SCE showed good AI 0.595 against S. aureus. Among the tested extracts, all the extracts showed significant AI when compared to standard streptomycin. In this study seed chloroform extract showed good inhibition of growth against S. aureus, seed pet ether is also effective against K. pneumonia, S. pneumonia and P. aeruginosa. Stem bark chloroform extract has induced considerable inhibition against V. cholerae and seed ethanol extract showed average inhibition of growth against S. typhi when compared with the standard antibiotic streptomycin. Comparatively, the chloroform and pet ether extracts showed significant inhibition for selected pathogenic bacterial strains. The antibacterial property of plant may be due to the presence of secondary metabolites mainly terpenoids, alkaloids, glycosides, phenolic compounds and tannins¹¹. This potential antibacterial nature of plant may be helpful in the development of new class of natural antibiotics to cure infectious diseases caused by pathogenic bacteria.

Table 1: Qualitative Phytochemical Analysis of Extracts of *Chloroxylon* Swietenia

Tests LPE LCE LEE SBPESBCESBEESPE SCE SI Alkaloids +										
Flavonoids -	Tests	LPE	LCE	LEE	SBPE	ESBCI	ESBEI	ESPE	SCE	SEE
Phenolic +<	Alkaloids	+	+	+	+	+	+	+	+	+
compounds +	Flavonoids	-	-	-	-	-	-	-	-	-
Terpenoids +		+	+	+	+	+	+	+	+	+
Glycosides	-	+	+	+	+	+	+	+	+	+
Tannins + </td <td>Cardiac</td> <td>_</td> <td>+</td> <td>+</td> <td>_</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td>	Cardiac	_	+	+	_	+	+	+	+	+
	Glycosides									
Saponins	Tannins	+	+	+	+	+	+	+	+	+
	Saponins	_	_	_	_	_	_	_	_	_

LPE-Leaves pet ether extract, LCE-Leaves chloroform extract, LEE-Leaves ethanol extract, SBPE- Stem Bark pet ether extract, SBCE- Stem Bark chloroform extract, SBEE- Stem Bark ethanol extract, SPE-Seed Pet ether extract, SCE-Seed chloroform extract, SEE-Seed ethanol extract.

(+) indicate the presence and (-) the absence of the respective phytochemicals.

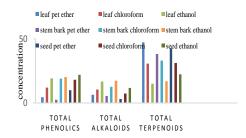


Fig 1: Quantitative Estimation of Total Phenolics, Alkaloids and Terpenoids

Antibacterial Activity

Та	ble	2:	Anti	ba	cteria	l Activ	ity by	y Agar	Well Plate Method
a					1				

Sl. ExtractsExtracts Concentration 1600 µg										
No.	Zone of Inhibition(mm)									
	S. aureus	К.	<i>V</i> .	<i>S</i> .	Р.	S. typhi				
		рпеит	onia cholera	e pneun	nonia aerugii	nosa				
LPE	15.33±0.3	3 11.67 ±	0.3308.33±0	.33 14.67	±0.3312.67±	0.33 08.00±0.00				
LCE	16.00 ±0.0	010.33±	0.3309.33±0	.3312.67	±0.3311.33±	0.3310.33±0.33				
LEE	12.33±0.3	309.33±	0.3310.67±0	.3310.33	±0.3310.33±	0.3309.33±0.33				
SBPE	13.00±0.0	009.33±	0.3308.33±0	.3312.67	±0.3309.33±	0.3308.33±0.33				
SBCE	16.33±0.3	312.33±	0.3312.33±0	.3314.67	±0.3312.67±	0.3308.00±0.00				
SBEE	11.33±0.3	311.67±	0.3310.33±0	.3314.67	±0.3311.33±	0.3308.33±0.33				
SPE	14.67±0.3	3 16.67 ±	0.3308.33±0	.33 19.67	±0.3319.67±	0.3308.00±0.00				
SCE	17.67±0.3	314.67±	0.3307.67±0	.3317.67	±0.3316.67±	0.3308.33±0.33				
SEE	12.33±0.3	311.67±	0.3308.00±0	0.0007.67	±0.3310.33±	0.3311.67±0.33				

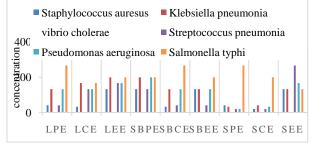

LPE-Leaves pet ether extract, LCE-Leaves chloroform extract, LEE-Leaves ethanol extract, SBPE- Stem Bark pet ether extract, SBCE- Stem Bark chloroform extract, SBEE- Stem Bark ethanol extract, SPE-Seed Pet ether extract, SCE-Seed chloroform extract, SEE-Seed ethanol extract.

Table 3	Table 3: Activity Index									
Sl. Extr	Sl. ExtractsExtracts Concentration 1600 µg									
No.	Activ	ity Index								
	S.	К.	<i>V</i> .	S.						

	S. aureus	K. pneumonia	V. cholerae	S. pneumonia	P. aeruginosa	S. typhi
LPE	0.516	0.421	0.290	0.505	0.447	0.289
LCE	0.539	0.373	0.325	0.436	0.399	0.373
LEE	0.415	0.337	0.372	0.356	0.364	0.337

				.,-(-)		
SBPE	0.438	0.337	0.290	0.436	0.329	0.301
SBCE	0.550	0.445	0.430	0.505	0.447	0.289
SBEE	0.381	0.421	0.360	0.505	0.399	0.301
SPE	0.494	0.602	0.290	0.678	0.694	0.289
SCE	0.595	0.530	0.267	0.609	0.588	0.301
SEE	0.415	0.421	0.279	0.264	0.364	0.421

LPE-Leaves pet ether extract, LCE-Leaves chloroform extract, LEE-Leaves ethanol extract, SBPE- Stem Bark pet ether extract, SBCE- Stem Bark chloroform extract, SBEE- Stem Bark ethanol extract, SPE-Seed Pet ether extract, SCE-Seed chloroform extract, SEE-Seed ethanol extract.

Fig 2: MIC by Micro Titer Plate Method

LPE-Leaves pet ether extract, LCE-Leaves chloroform extract, LEE-Leaves ethanol extract, SBPE- Stem Bark pet ether extract, SBCE- Stem Bark chloroform extract, SBEE- Stem Bark ethanol extract, SPE-Seed Pet ether extract, SCE-Seed chloroform extract, SEE-Seed ethanol extract.

5. CONCLUSION

Thus, from the present study it is clear that the plant extracts of *Chloroxylon swietenia* contain considerable amounts of bioactive secondary metabolites which are authenticable for the pharmacological properties. All the tested plant extracts possess antibacterial activity against selected clinical pathogenic bacterial strains. This confirms the traditional claim of the plant *Chloroxylon swietenia* against many ailments.

6. ACKNOWLEDGMENTS

The authors are thankful to DBT, New Delhi, India for providing financial support through DBT- BUILDER program (Order No. BT/PR9128/INF/22/190/2013, Dated: 30/06/2015) and the Kuvempu University administrative authority for offering the facility to carry out the work.

7. REFERENCES

- Sen A, Batra A. Evaluation of Antimicrobial Activity of Different Solvent Extracts of Medicinal Plant: Melia Azedarach L. Int. J. Curr. Pharm. Res. 2012;4:67–73.
- Ahmad, I, Mehmood Z, Mohammad F. Screening of some Indian medicinal plants for their antimicrobial properties. J. Ethnopharmacol. 1998;62:183–93.
- Bussmann RW. The Globalization of Traditional Medicine in Northern Peru: From Shamanism to Molecules. Evidence-Based Complement. Altern. Med. 2013;2013:1–46.
- Palani S, Raja S, Senthil Kumar B. Hepatoprotective and antioxidant potential of Chloroxylonswietenia (Rutaceae) on acetaminophen induced toxicity in male albino rats. Int. J. PharmTech Res. 2010;2:162–70.

- Kumar GVS, Anusha N, Ramadevi D. Pharmacognostic and Preliminary Phytochemical Studies on Leaf Extracts of Chloroxylon swietenia. 2014;6.
- Ravi Kiran S, Sita Devi P, Janardhan Reddy K. Evaluation of in vitro antimicrobial activity of leaf and stem essential oils of Chloroxylon swietenia DC. World J. Microbiol. Biotechnol. 2008;24:1909–14.
- Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L. Extraction, isolation and characterization of bioactive compounds from plants' extracts. African J. Tradit. Complement. Altern. Med. 2011;8:1–10.
- Mustapha B, Kubmarawa D, Shagal M, Ardo B. Preliminary Phytochemical Screening of Medicinal Plants Found in the Vicinity of Quarry Site in Demsa, Adamawa State, Nigeria. Am. Chem. Sci. J. [Internet]. 2016;11:1–7.
- Rajesh KP, Manjunatha H, Krishna V, Kumara Swamy BE. Potential in vitro antioxidant and protective effects of *Mesuaferrea* Linn. bark extracts on induced oxidative damage. Ind. Crops Prod. 2013;47:186–98.
- M PR, P PM. Studies on Qualitative and Quantitative Phytochemical Analysis of Cissusquadrangularis. Pelagia Res. Libr. Adv. Appl. Sci. Res. 2016;7:11–7.
- Indumathi C, Durgadevi G, Nithyavani S, Gayathri PK. Estimation of terpenoid content and its antimicrobial property in Enicostemmalitorrale. Int. J. ChemTech Res. 2014;6:4264–7.
- Sudhesh L Shastri, V Krishna, Ravi Kumar S, Santosh Kumar S R, Venkatesh, Pradeepa K. Phytochemical analysis, antibacterial property and molecular docking studies of *Mammea suriga* kosterm. World J Pharm Sci 2016; 4(9): 331-340.
- Teanpaisan R, Kawsud P, Pahumunto N, Puripattanavong J. Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms. J. Tradit. Complement. Med. [Internet]. Elsevier Ltd; 2017;7:172–7.
- Elshikh M, Ahmed S, Funston S, Dunlop P, McGaw M, Marchant R, et al. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol. Lett. Springer Netherlands; 2016;38:1015–9.
- 15. Sarker SD, Nahar L, Kumarasamy Y. Microtitre platebased antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods. Elsevier Inc.; 2007;42:321–4.
- Arunodaya HS, Krishna V, Shashikumar R, Girish Kumar K. Antibacterial and antioxidant activities of stem bark essential oil constituents of *Litsea glutinosa* C. B. Rob. Int. J. Pharm. Pharm. Sci. 2016;8:258–64.
- 17. Rahman H, Mahmood R, Rahman N, Haris M. Antibacterial Activity of *Solanum pubescens* - An Ethnomedicinal Plant from South Western Region of

- Int J Pharma Res Health Sci. 2017; 5 (6): 2002–07 Andhra Pradesh. Int. J. Appl. Sci. Biotechnol. 2014; 2: 501–9.
- Rahman N, Mahmood R, Rahman H, Haris M. Spectrophotometric Screening of Potent Bactericidal Property of Thevetia Peruviana Schum. Leaf and Fruit Rind Extracts on Clinical and Plant Pathogens. Int. J. Appl. Sci. Biotechnol. 2014;2:451–9.
- 19. Singh B, Bhat TK, Singh B. Potential therapeutic applications of some antinutritional plant secondary metabolites. J. Agric. Food Chem. 2003;51:5579–97.
- Nour AH, Nour AH, Sandanasamy JAP. Antibacterial Activity of Different Extracts of *Swietenia Macrophylla* King. 2012;2012:25–6.
- 21. Alam K, Mansur FJ, Karim MM, Haque A. Antimicrobial activity of *Swietenia mahagoni* (seed) against various pathogenic microbes. Indo Am J Pharm Res. 2014;4(05):2362-6.
- Akula R, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav 2011; 6: 1720–31

Conflict of Interest: None Source of Funding: Nil