PHS Scientific House

International Journal of Pharma Research and Health Sciences

Available online at www.pharmahealthsciences.net

Original Article

Phytochemical Screening, Biochemical Estimations and Spectroscopic analysis of Various Extracts of *Piper betel* Leaves

Sonia Johri^{*}, Neha Khan, Nasir Khan Department of life sciences, ITM University, Gwalior, India

ARTICLE INFO

Received: 31 Oct 2017 Accepted: 15 Nov 2017 *Piper betel* called 'paan' has known ethnomedicinal properties and has been used as traditional herbal medicine in several countries. In the present study, an effort has been made to screen the most potent extract of *Piper betel* leaves which can show its ability as an antioxidant and antihaemolytic agent for alternative medicine in managing the disease. Results revealed that petroleum ether extract had high phenolic and flavonoids content followed n-butanol and aqueous extract.TLC of various extracts of *Piper betel* leaves depicted that the RF values of petroleum ether, n-butanol and aqueous extract was quite close to quinine standard thus representing high alkaloids content. Several concentrations of various extract ranging from 200-1000 μ g/ml were tested for their reducing ability. It was observed that n-butanol fraction showed highest reducing power ability. Highest NO scavenging activity was observed in aqueous and n-butanol extracts at 1mg/ml concentration. *In vitro* antihaemolytic was performed by hypotonic induced method. Highest antihaemolytic activity was observed by petroleum ether and n-butanol extract. FTIR spectrum profile was generated and reported the presence of characteristic functional group.

ABSTRACT

Key words: Piper Betel, Antioxidant, Antihaemolytic, FTIR.

Corresponding author * Sonia Johri Department of life sciences, IMT University, Gwalior E-mail: soniajohari@itmuniversity.ac.in

1. INTRODUCTION

Piper betel called 'paan' is green heart shaped very famous leaf belongs to the family piperaceae. It is rich in nutrient, minerals, vitamins, antioxidants. *Piper betel* leaves are rich in many nutrients like water, protein fats, fiber, calcium, iron etc. and helps in curing various diseases like diabetes, hypertension, brain toxin, halitosis, boils, abscesses, obesity, wound healing, voice problems, conjunctivitis, constipation, itches, ringworm, swelling of gum, rheumatism, abrasion,

cuts and injuries etc¹. Piper betel leaves contains various biologically active compounds which are responsible for antioxidant activity². The leaves have an essential oil composing of terpene-4-ol, safrole, allyl pyrocatehalmonob acetate, eugenol acetate hydroxyl chavicol, eugenol. Piper beteloil contains cadinene carvacrol, chavicol, P- cymene, caryophyllene, chavibetol, cineole and estragol as the major components^{3,4}. Antioxidant compounds can donate electrons to reactive radicals, reducing them into more stable and unreactive species. Free radicals have been claimed to play a vital role in affecting human health by causing several diseases including cancer, hypertension, heart attack and diabetes. Dietary intake of phenolic compounds correlates with reduced coronary heart disease, cancer mortality and protective in many health-related properties, such as antioxidant, anticancer, antiviral and anti-inflammatory activities^{5,6}. Phenolics present in fruits and vegetables have received considerable attention because of their potential antioxidant activities^{7,8}.

Anomalies in RBCs makes it fragile leading to severe anaemia⁹. Many researchers have been carried out the study of the mechanism of haemolytic actions of many agents on RBCs and it has been reported that RBCs lysis is related with oxidative stress. Haemolyticanaemia have been reported to cause membrane lipid peroxidation and denaturation of cytoskeleton¹⁰.

In the present study, an effort has been made to screen the most effective extract of *piper betel* leaves which can show antioxidant andantihaemolytic activity and prove to be beneficial in treating haemolytic anemia caused due to various diseases such as malaria.

2. MATERIALS AND METHODS

Qualitative phytochemical screening of *Piper betel*leaves in various extracts

Preparation of plant extract

Fresh *piper betel* leaves were collected from village Sandalpure, Antri of Gwalior, M.P. 1kg of *piper betel* cut in to small pieces and shade dried. The dried *piper betel* leaves were ground to a fine powder. 50g of powder was weighed and extracted with soxhelet apparatus using various solvent according to their polarity i.e. petroleum ether, chloroform, methanol, n-butanol, ethyl acetate and water. After solvent extraction, it was evaporated to obtain a powdered extract for various biochemical analysis.

Preliminary phytochemical screening of the extracts was performed for the presence of alkaloids, flavonoids, steroids, tannins, saponin, phenol and by the standard procedures.

Alkaloids: To 1 ml of extract, 2-3 drops of Wagner's reagent were added. The appearance of pale or white precipitate indicated the presence of alkaloids¹¹.

Steroids: To 2 ml of extract, 2 ml of chloroform and 2 ml of concentration sulphuric acid was added. Tubes were shaken and allowed to stand. Formation of red colour chloroform layer indicates the presence of steroids¹².

Tannins: 3 ml of extracts was treated with 1% lead acetate solution. A red or yellow colour precipitate was formed, indicating the presence of $tannins^{11}$.

Saponins: To 3 ml of extracts, few drops of sodium bicarbonate was added and shaken vigorously for 3 min. Honey comb froth was formed, showing the presence of saponins¹¹.

Phenolic: To 1 ml of extracts, 2 ml of distilled water and few drops of 10% ferric chloride solution were added. Formation of blue or green colour indicates the presence of phenols¹¹.

Flavonoids: To2 ml of each extract was added few drops of 20% sodium hydroxide.Formation of intense yellow colour is observed, by adding 70% hydrochloric acid which disappeared. Disappearance of yellow colour indicate the presence of flavonoids in the extract¹³.

Quantitative Estimation of Secondary Metabolites Total Phenolic Content

The total phenolics in the extract were determined using Folin-Ciocalteu method as described by¹⁴. To each sample solution (1.0 ml) and the standard (gallic acid) was added 5 ml of Folin-Ciocalteu (sigma-aldrich) and 4 ml sodium carbonate (7% w/v) and shaken. The solution could stand for 30 min in the dark at room temperature, after which absorbance was measured at 765 nm using a spectrophotometer. The phenolic content was calculated from the standard curve of gallic acid¹⁵.

Total Flavonoid Content

A known volume of extract was placed in a 10ml volumetric flask add distilled water to make final volume 5 ml followed by adding 0.3 ml NaNO₂(1:20). Add 3ml AlCl3 (10%) 5 min later. After 6 min, 2 ml 1 M NaOH was added and the total volume was made up to 10ml with distilled water. The solution was mixed well again, and the absorbance was measured against a blank at 510 nm with a (UV-VISIBLE Parkin Elmer Lambda 23 with win lab N6.0software.). The flavonoid content was calculated with quercetin as standard¹⁶.

Reducing Power assay

2.5 ml phosphate buffer (0.2M, pH 6.6) and 2.5 ml 1% potassium ferrocyanide was mixed in 1 ml of different fraction of plant extract at various concentration (200 - 1000 μ g/ml) diluted in distilled water. The test tubes were incubated at 50°C in water bath for 10 min. followed by addition of 2.5 ml 10% TCA and centrifuged1 at 3000 rpm for 10 min. 2.5 ml of upper layer was collected, and 2.5 ml distilled water was added followed by 0.5 ml 0.1% feCl₃ (freshly prepared). Increase in absorbance was measured at 700 nm against a suitable blank¹⁷.

NO radical Scavenging activity

NO (Nitric oxide) radical scavenging activities of plant extract in different fraction were examined by Royer *et al.*¹⁸. To 200 μ l sodium nitroprusside (5Mm), 800 μ l extracts (0.1-1 mg/ml) dissolved in PBS (25 mM, pH 7.4)was added. The mixture was incubated for 2.5 hrs. at 37°C under normal

light followed by incubation in dark for 20 min. 600 μ l Griess reagent was added and incubated for 40 min. at room temperature and absorbance was measured at 540 nm against a suitable blank (2ml H₂O and 0.6 ml Griess reagent). Control (1.6 ml H₂O, 400 μ l SNP and 600 μ l Griess reagent) was prepared and percent of inhibition was calculated by using this equation.

Percentage inhibition = OD of control – (OD of extract/ OD of control) x 100

TLC (Thin layer chromatography)

Thin layer chromatography (TLC) is a chromatographic method which is employed to separate mixtures. It is performed on aluminum or plastic foil, which is covered with a thin layer of adsorbent substance, generally silica gel aluminum oxide, or cellulose. This film of adsorbent is identified as the stationary silica phase. after the sample has been filled on the plate, a solvent or solvent mixture (mobile phase) is drained up the plate via capillary action. because dissimilar analytes rise in the TLC plate at different rates, finally the mixture was separated¹⁹.

Antihaemolytic activity/ membrane stabilizing method

5 ml of whole blood of a healthy person in heparinized tube was collected. The blood was centrifuged at 3000g for 10 min. supernatant was removed and RBCs were washed thrice with sodium chloride isotonic solution (154 mM NaCl) in 10 mM Sodium phosphate buffer (pH 7.4) through centrifugation using the same volume as supernatant. Finally, RBCs were resuspended in the same volume of isotonic buffer solution. 0.5 ml of RBCs suspension was mixed with 5 ml of hypotonic solution (50 mM NaCl in 10 mM sodium phosphate buffer pH 7.4) containing 0. 5 ml plant extracts (10mg/ml). The control sample was prepared by 0.5 ml suspension mixed with hypotonic buffered saline. The mixture was incubated for 10 min. at room temperature, centrifuged at 3000g for 10 min. and the optical density of supernatant at 540nmwas measured^{20,21}.

Fourier Transform Infrared Spectroscopy

FTIR spectra for the *Piper betel* leaf extracts were analysed in the present study^{22,23}. FTIR is used as a tool for the characterization and identification of compounds or functional group (chemical bonds) present in an unknown mixture of plant extract. The FTIR from 4000 to 390 cm⁻¹ was recorded on Perkin Elmer (spectrum 2) spectrophotometer.

Statistical analysis

Results were expressed mean \pm standard deviation from three replicate (n=3) experiments. The free radical scavenging activity was calculated by using GraphPad Prism 7 ink. software

3. RESULTS AND DISCUSSIONS

Table 1 show the qualitative preliminary phytochemical screening of extract. The results revealed that the petroleum extract had high tannin content followed by alkaloids, steroids and saponins. The petroleum ether depicted high

phenolic and flavonoids content on the contrary it was less detected in the chloroform and methanolic extract which can be correlated to their antioxidant activity.

Table 2 depicts quantitative analysis of flavonoids and phenolic content and revealed that highest flavonoid content was found in petroleum ether, chloroform, extract followed by aqueous extract. The phenolic content was also high in petroleum ether followed by chloroform, methanol and lower in aqueous extract. Flavonoids and related compounds whichare widely distributed in the form of flavonoid, flavones and flavanols are reported to possess strong antioxidative characteristics. The antioxidant activity of flavonoids could be related to the hydroxyl groups²⁴.

Phenolic compounds are known to be a powerful chain breaking antioxidants as they possess scavenging ability due to their hydroxyl group. The medicinal plants could inhibit oxidative stress by antioxidant mechanism. Hydrogen donation is the main mechanism of phenolics as antioxidants. The lower strength of the O–H bond present in phenolics corresponds to a higher scavenging activity. Thus, high phenolic content in the n-butanol followed by

petroleum ether and aqueous represent a powerful antioxidant activity.

Table 2 shown the TLC pattern of various extracts of *piper betel* leaves the retention factor (RF) of aqueous, n-butanol and petroleum ether extract was quite close to quinine standard thus representing high alkaloids content.

Several concentrations of various extract ranging from 200-1000 µg were tested for their reducing ability. Fig 1 shows the reducing power of Piper betel in various extracts. The pattern of reducing ability in piper betel was concentration dependent. It was observed that n-butanol fraction had highest reducing power ability followed by ethyl acetate. Nbutanol exhibited reducing power capability was 3.2 at 1000 µg/ml.In the present study highest reducing power capability was observed at 1000µg/ml which exert antioxidant action by breaking the free radical chain through donating a hydrogen atom²⁵. In this assay, Fe3+/ferricyanide complex is reduced to the ferrous form by antioxidants and can be monitored by measuring the formation of navy blue color at 700 nm²⁶. The antioxidant can donate an electron to free radicals, which leads to the neutralization of the radical. Reducing power was measured by direct electron donation in the reduction of $\operatorname{Fe}^{3+}(\operatorname{CN}^{-})_{6}$ -Fe²⁺(CN⁻)₆.

Fig. 2 shows the NO scavenging activity of *Piper betel*in various extracts. Highest scavenging activity was found in nbutanol and aqueous extract which was 55.7 and 51.3 respectively at 1 mg/ml concentration. *P. betel* reduced efficiently the generation of NO radical from sodium nitroprusside²⁷.

Table 4 shows the antihaemolytic activity of *Piper betel*. Control shows 100% haemolysis in absence of extract. Petroleum ether and n-butanol extract shows minimum percent of haemolysis was 25.05% and 35% respectively at

10 mg/ml concentration. These two extracts have more membrane protecting capability²⁸.

FTIR (Fourier Transform Infra-Red) spectral data interpretation is as follows fig. 3 (a-d)

Petroleum Ether Extract: The extract of *piper betel* represented a characteristic band at 2851 cm⁻¹ indicating the presence of C-H Stretch and 1734 cm⁻¹ indicating presence of carbonyl group C=O, 1318 cm⁻¹ C-N Stretch, 834 =C-H bending and 723 cm⁻¹ for C-Cl Stretch group presented petroleum ether extract.

Ethyl acetate extract: It showed a characteristic band at 3276 cm^{-1} indicating the presence of O-H Stretch, 1736 cm^{-1} C=O stretch, 1241 cm^{-1} for C-O stretch, 889 cm^{-1} =C-H bending and 725 cm^{-1} C-Cl stretch group presented in the chloroform extract.

n-butanolic extract: It exhibited characteristic band at 2919 cm⁻¹ C-H Stretch, 1736 cm⁻¹ C=O Stretch, 1241 cm⁻¹ C-O Stretch, 889 cm⁻¹=C-H bending and 778 cm⁻¹ C-Cl stretch.

Aqueous Extract. A characteristic absorption band were exhibited at 3284 cm⁻¹ for O-H stretch, 2922 cm⁻¹ for C-H Stretch, 1617 cm⁻¹ for C=O Stretch, 1369 cm⁻¹ for C=C stretch, 664 cm⁻¹ for C-Br stretch.

In FTIR the various functional groups were observed in the different extracts. The FTIR analysis revealed presence of carbonyl and aldehyde group hence rich in primary metabolites as well as secondary metabolites. Our results agree Kumar et al $(2014)^{29}$. Where functional group components of amino acid, amides, amines, carboxylic acid, carbonyl compounds, organic hydrocarbons and halogens were analyzed in the methanolic leaf extract of *Ampelocissuslatifolia* by FTIR and reported that the transition metal carbonyl compounds and aliphatic fluoro compounds were only present in the extract.

 Table 1: Qualitative phytochemical screening of various extracts of piper betel leaves

Fractions	Alkaloids	Steroids	Tannins	Saponins	Phenolics	Flavonoids
Petroleum	++	++	++	++	+++	+++
ether						
Chloroform	+	+	+	+	+	+
Ethyl	+	+	-	+	+	+
acetate						
Methanol	+	+	+	+	+	+
n-butanol	+	+++	++	+	+	++
Aqueous	++	+	+	++	++	++
(+) indicates pr	esence of co	mpounds,	(-) indicate	s absence of	compounds	

Table 2: Quantitative secondary metabolite estimations of various extract of *Piner betel* leaves

Fractions	Flavonoids	Phenolics
Petroleum ether	10.92 mg/g <u>+</u> 0.9	38.52 mg/g <u>+</u> 3.5
Chloroform	10.26 mg/g <u>+</u> 0.87	21.72 mg/g <u>+</u> 1.9
Ethyl acetate	7.39 mg/g <u>+</u> 2.1	21.32mg/g+3.8
n-butanol	10.15mg/g+0.9	45.12mg/g <u>+</u> 0.92
Methanol	7.715 mg/g <u>+</u> 0.7	12.48 mg/g+1.2
Aqueous	10.97 mg/g <u>+</u> 1.1	31.27 mg/g <u>+</u> 1.1

Values are expressed as mean +SE (n=3)

Table 3: Thin-layer Chromatography (TLC) of various extracts of *Piper betel*leaves for the presence of alkaloids.

Sample Name	RF values	
Quinine Standard	0.53	
Petroleum Ether Extract	0.50	
Chloroform Extract	0.72	
Ethyl acetate	0.85	
n-butanol	0.56	
Methanolic Extract	0.65	
Aqueous Extract	0.52	

Fig1: Reducing power of Piper betel leaves in various extracts

Fig 2: NO radical scavenging activity of *Piper betel* leaves Table 4: Antihaemolytic activity of *Piper betel* leaves in various extracts

Sample	% haemolysis	
Control	100%	
Piper betel-petroleum ether	25.05%	
Piper betel-ethyl acetate	99.6%	
Piper beteln-butanol	35%	

Fig 3: FTIR spectra showing functional groups of various extract of *Piper betel* leaves(a) petroleum ether extract (b) ethyl acetate extract (c) n-butanol extract (d) aqueous extract

4. CONCLUSION

Thus, it can be concluded from the present study that out of six extracts i.e. petroleum ether, chloroform, ethyl acetate, nbutanol, methanol, aqueous of *Piper betel* leaves three extracts such as n-butanol, aqueous, petroleum ether contains high flavonoid. These three extracts efficiently reduced the Fe^{3+} and NO radicals and reduced percentage of haemolysis. The butanolic, petroleum ether and aqueous extract showed the potential to reduce free radical and membrane stabilizing ability thus exhibiting more antioxidant and anti haemolytic properties. Ethyl acetate and chloroform extracts did not give satisfactory results. Hence further *in vivo* studies are needed for evaluating the potential of the extracts.

5. ACKNOWLEDGMENT

The authors are thankful to ITM University Gwalior for providing research as well as instrumentation facility at P.C. Ray center for research highly acknowledged. The authors thank the MPCST (M.P. Council of science and Technology) for providing research grants to support this research work.

6. REFERENCES

- Singh E, Aishwarya J, Singh A, Tiwari A. A review: Nutraceutical properties of *Piper betel*. AJPCT 2016; 4(2): 28-49.
- Sripradha S. Betel leaf- the green gold. J Pharm Sci Res 2014; 6(1): 36-37.
- Dwivedi V, Tripathi S. Review study on potential activity of *piper betel*. J Pharmacogn Phytochem 2014; 3(4): 93-98.

- Chahal J, Ohlyan R, Kandale A, Walia A, Puri S. Introduction, phytochemistry, traditionaluses and biological activity of genus piper: a review. IJCPR 2011; 2(2): 130-144.
- Halliwell B. Dietary polyphenols: Good, bad, or indifferent for your health? Cardiovascular Research. 2007; 73: 341–347.
- Kubola J, Siriamornpun, S. Phenolic contents and antioxidant activities of bitter gourd (Momordicacharantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem 2008; 110: 881–890.
- Pan Y, Wang K, Huang S, Wang H, Mu X, He, C. Antioxidant activity of microwave-assisted extract of longa (Dimocarpuslongan Lour.) peel. Food Chem 2008; 106: 1264–1270.
- Amin A, Yazdanparast R. Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chem 2007; 104: 21–29.
- 9. Guyton and Hall. Textbook of Medical Physiology, Saunders, eleventh edition, 2007; 426-427.
- Jollow DJ and McMillan DC. Oxidative stress, glucose-6-phosphate dehydrogenase and the red cell. Adv Exp Med Biol., 2001; 500: 595-605.
- 11. Harborne JB. Phytochemical methods. Second edition, Chapman and Hall Ltd, London1973, pp 49-188.
- Kumar S, Sharma UK, Sharma AK, Pandey AK. Protective efficancy of *Salanumxanthocarpum* root extract against free redical damage. Phytochemical analysis and antioxidant effect. Cell Mol Bio 2012; 58 (1): 174-181.
- Prabhavathi RM, Prasad MP, Jayaramu M. (2016). Studies on qualitative and quantitative phytochemical analysis of *Cissusquadragularis*. Adv Appl Sci Res 2016; 7 (4): 11-17.
- Kujala TS, Loponen JM, Klika KD, Pihlaja k. Phenolics and betacyanin's in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food Chem.2000;47: 3954-3962.
- Habila JD, Bello IA, Dzikwi AA, Musa H, and Abubakar N. Total phenolic and antioxidant activity of *Tridaxprocumbens* Linn. Afr J Pharm Pharmacol2010; 4 (3):123-126.
- Zhuang XP, Lu YY, Yang GS. Extraction and determination of Flavonoid in ginkgo. Chinese Herbal Medicine. 1992; 23: 122-124.
- 17. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal biochem1996; 239(1):70-76.
- Royer M, Diouf PN, Stevanovic T. Polyphenol contents and radical scavenging capacities of red maple (Acer rubrum L.) extracts.Food ChemToxicol2011; 49 (9): 2180-88.
- Abdul M, Shami M. Isolation and identification of alkaloids extracted from local plant in Malaysia. Annals

- Int J Pharma Res Health Sci. 2017; 5 (6): 1939-44 of chromatography and separation technique. 2016; 2 (1):1016.
- Shinde UA, Phadke AS, Nair AM, Mungantiwar AA, Dikshit VJ, Saraf MN.Membrane stabilizing activity-a possible mechanism of action for the anti-inflammatory activity of *Cedrusdeodara* wood oil. Fitoterapia. 1999; 70: 251-57.
- Sikder MAA, Kaisar MA, Rashid MA, Millat MS, Sultana A. 2012. *In vitro* membrane stabilizing activity, total phenolic content, cytotoxic, thrombolytic and antimicrobial activities of *Calliandrasurinamensis* (Wall.). *J. Pharmacog. Phytochem*2012;1: 45-50.
- Bhaskar JS, Parthasarathy GA. Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, North eastern india. J Mod Phys 2010; 1: 206-210.
- 23. Pednerkar A, Raman B. Anti-microbial and antioxidant potential with FTIR analysis of *Ampeloxcissuslatifolia* (roxb.) planch. leaf. Asian J of Pharm Clinical Res 2013; 6 (1): 67-73.
- Prasad, NK, Divakar S., Shivamurthy GR, Aradhya SM. Isolation of a free radical scavenging antioxidant from water spinach (Ipomoea aquatic Forsk). J Sci Food Agric 2005; 85:1461–1468.
- 25. Duan X, Wu G, Jiang Y. Evaluation of antioxidant properties of phenolics from litchi fruit in relation to pericarp browning prevention. Molec2007;12:759–771.
- Gupta S, Prakash J. Studies on Indian green leafy vegetables for their antioxidant activity. Plant Food for Human Nutrition 2009; 64 (1):39–45.
- Naskar S, Islam A, Mazumdar UK, Saha P, Haldar PK, Gupta M. *In vitro* and *In vivo* antioxidant potential of hydromethanolic extract of *Phoenix dactylifera*fruits. J Sci Res 2010; 2 (1): 144-57.
- Jahan N, Rahman SMA, Rahman MS, Rashid MA. *In vitro* thrombolytic and membrane stabilizing studies of *Brassica rapasubsp. Chinese* (L.) Hanelt. Bangla Pharm J 2014; 17(2): 172-176.
- 29. Kumar AR, Seasotiya L, Ramaswamy M. Phytochemical screening by FTIR spectroscopic analysis of leaf extracts of selected Indian medicinal plants. Int J Curr Microbiol Appl Sci 2014; 3 (1): 395-406.

Conflict of Interest: None Source of Funding: Nil