PHS Scientific House

International Journal of Pharma Research and Health Sciences

Available online at www.pharmahealthsciences.net

Review Article

A Review: Plants and Herbs Used in Anxiety

Ch Gopala Krishna, Y Harshavardhan Reddy, A Harika^{*}, K Ramadevi, M Koteswari,

P Maneesha Rani

A. M. Reddy memorial college of pharmacy, Petlurivaripalem, Narasaraopet, India.

ARTICLE INFO	ABSTRACT

Received: 15 Feb 2018 Accepted: 27 Jan 2018

This review looks at all the herbal medicines and formulas in treating depression and anxiety disorders. Pubmed and the Cochrane Library were searched for pharmacological and clinical evidence of herbal medicines with antidepressant and anti-anxiety action. Good evidence exists for the use of kava and St John swort in the treatment of anxiety and depression respectively, while there is insufficient clinical evidence for the use of many other herbal medicines in psychiatric disorders. Newer herbal preparations that potentially have significant use in depression and anxiety and urgently require more research are Rhodiolarosea (roseroot), Crocus sativus (saffron), Passifloraincarnata (passion flower) and Piper methysticum (kava). They need further evidence base via clinical studies. Depression and anxiety are commonly researched but the efficacy of herbal medicines in these disorders requires attention. The review addresses all the current issues in herbal therapy, safety issues and future areas of application in the field.

key words: Herbal medications, depression, anxiety, kava, St John swort, passion flower.

Corresponding author * A Harika A. M. Reddy memorial college of pharmacy, Petlurivaripalem, Narasaraopet, India Mail ID: asamharika@gmail.com

1. INTRODUCTION

M Mood disorders, anxiety and sleep disorders are largely prevalent and highly co-morbid psychiatric conditions ¹. It is estimated that by 2020 depression will result in 2nd greatest increase in morbidity after cardiovascular diseases, presenting a significant socioeconomic burden (WHO, 2006). Since the past decade, many herbal medicines have been used in people with mood and anxiety disorders ². Due to the increasing popularity of herbal medications majority of the patients are consulting herbalists, naturopaths, and other healers, in addition to physicians. A data from a

nationally representative sample of 2055 people interviewed during 1977-1988 revealed that 57% of those suffering anxiety attacks, and 54% of those with severe depression reported using herbal medicine during the previous 12 months to treat their disorder ³. Similarly interviews of 82 psychiatric North American inpatients revealed that 44% had used herbal medicine (mainly for psychiatric purposes) during the previous 12 months⁴. There is however, a limited data regarding the benefits and liability of herbal remedies and other natural remedies. There have been few reports of serious adverse effects from these medications and by and large these medications have been considered safe and effective ^{5, 6}. This article reviews the literature on various herbal medications in the treatment of depression and anxiety. MECHANISM OF ACTION OF HERBAL MEDICATIONS The primary mechanism of action involves modulation of neuronal communication, via specific plant metabolites binding to neurotransmitter/neuromodulator receptors ⁷ and via alteration of neurotransmitter synthesis and general function⁸. Other mechanisms involve stimulating or sedating CNS activity, and regulating or supporting the healthy function of endocrine system ⁹⁻¹¹. The psycho-pharmacological effects of herbal medicines and their clinical validation can be explored by the use of "omic" genetic technologies 12.

2. HERBAL MEDICATIONS USED IN THE MANAGEMENT OF DEPRESSION Piper Methysticum (Kaya)

It causes GABA channel modulation (lipid membrane structure and sodium channel function) and weak GABA binding which causes increased synergistic effect of [3H] muscimol binding of GABA- -receptors. It also causes - adrenergic downregulation and MAO-B inhibition. It inhibits reuptake of norepinephrine in prefrontal cortex ⁸⁻¹¹. A 2003 cochrane review of randomised, double blind, controlled trials of rigorous methodology using Kava mono preparations (60-280 mg of kavalactones), found that Kava had a stastically significant anxiolytic activity on Hamilton Anxiety Scale (HAMA) compared with placebo (95% Cl; 0.1,7.7) but one trial demonstrated that kava was effective in short term treatment of anxiety ¹².

A meta analysis ¹³ revealed a similar conclusions. A 4 week study however found no significant difference between a standardised Kava extract and placebo ¹⁴. A meta-analysis based on six placebo controlled randomized trials using Kava extract WS 1490 in anxiety demonstrated that kava significantly reduced anxiety, with a mean improvement of 5.94 better than placebo ¹⁵. A 3-month randomized prospective open study investigating kava in peri menopausal women revealed that the reduction in anxiety with kava was significantly greater than in controls (on calcium supplementation) as assessed via the State trait anxiety index (STATI). It was also observed that depression depression declined at 3 months (- 5.03+/-1.4) as assessed

via the Zung's depression scale ¹⁶. A randomized controlled double blind, multicenter clinical trial compared kava with synthetic agents like busiprone or opipramol ¹⁷. The outcomes were measured using HAM-A, Boerner anxiety scale, SAS, CGI, a self rating scale for well being, a sleep questionnaire, a quality of life questionnire (QOL) and global judgement by investigator and patients.

It was found there there was no significant difference between Kava and Busiprone or opipramol regarding all efficacy and safety measures. 75% of the patient were classified as responders (50% reduction of HAM-A score) in each treatment group with 60% achieving full remission. A novel study involving 13 subjects evaluated kava's potential in improving vagal control insuffers of GAD¹⁸. It was observed that significantly more patients treated with kava showed improved BRC compared with placebo group, reflecting a favourable effect on reflex vagal contral of heart rate in patients with GAD. Due to potential hazard of hepatotoxicity, P.methysticum was withdrawn from the European and UK markets in 2002. It was found that the factors responsible for hepatotoxicity included individuals hepatic insufficiency to metabilisekava lactones (cytochrome P-450 (CYP) 3A4 and 2D6), incorrect cultivation (medicinal,tudie or wichmanni varieties) being used, preparations made using acetone or ethanolic media low in glutathione, potentially contaminated or poorly stored material and use of ariel parts or root peelings which are higher in alkaloids ¹⁹. It is recommended that only peeled roots from noble cultivers (cultivated species that are traditionally considered safe and therapeutic) using a water soluble extraction method is advised ²⁰.

In a study of kava use (Av 118 g/week, median duration of use=12 years) in an Arnhem Land community in northern territory of Australia it was found that liver functions in users of aqueous kava at these moderate levels of consumption appears to be reversible and began to return to baseline after 1-2 weeks abstinence from kava. No evidence of irreversible liver damage has been found ²¹. Kava has also been found to cause significant drug interaction and interactions with CYP 450 enzyme 22. One human pharmacokinetic trial determined that kava caused CYP2E1 inhibition in approximately 40%²³. Whole kava extract (normalized to 100µm total kavalactones) caused concentration dependent decreases in P450 activities, with significant inhibition of the activities of CYP1A2 (56% inhibition), 2C9 (92%), 2C19 (86%), 2D6(73%), 3A4 (78%) and 4 A9/11(65%) following preincubation ²⁴. Kava also interacts with benzodiazepines and causes sedation²⁵. However, the risk-benefit ratio is highly favourable towards kava due to respectable clinical efficacy and relative low risk of potential liver toxicity (1 case /million monthly doses)²⁶. PassifloraIncarnata (Passion Flower)

It is a benzodiazepine receptor partial agonist and causes GABA-system mediated anxiolysis. Animal behavioural models have shown nonsedative anxiolytic effect. In an in

vivo study employing a methanol extract of passion flower (125 mg/kg, orally) measured anxiolytic activity in mice, using the elevated plus-maze model, an increase in number of entries in open arm was demonstrated $^{27\cdot31}$. A 4 week RCT using passion flower extract on patients with GAD (n=36) showed that passion flower was as effective as oxazepan (30 mg/day) in reducing anxiety and it had less number of side effects 32 . In an acute study RCT (n=60) using 500mg of passion flower vs placebo for presurgical anxiety 33 , it was demonstrated that anxiety scores were significantly lower in the passionflower group than in the control group on a numerical rating scale.

Valeriana Spp. (Valerian)

Felter and Lioyd demonstrated that species of valerian officinalis and edulis have been used in traditional American and European medicine as a soporific and to treat various nervous system disorders. It decreases the degradation and simultaneously increases the binding of GABA. Also, valerenic acid from valerian has demonstrated GABA-A receptor (3 subunit) agonism and also 5-HT5a partial agonism ³⁴⁻³⁹. A large 8 week internet based RCT (n=391) using a valerian (6.4 valarenic acids/day) placebo, kava (300 mg kavalactones/day) + placebo or double placebo was conducted to determine the efficacy in treating co morbid anxiety and insomnia 40 . The primary outcome measure used in rating change in anxiety state was STATI-State. The results suggested that neither kava norvalerin relieved anxiety and insomnia more than placebo. But the design of this trial presents several potential problems, with internet recruitment for trials resulting in samples of questionable representativeness, and the STATI-state having the inadequate test-retest reliability to be a sensitive measure of therapeutic change in anxiety. In a systemic review and meta-analysis of 18 RCTs ⁴¹ using Valerian vs placebo or active controls ,valerian reduced sleep latency over placebo by only 0.70min (95% Cl3.44,4.83), with the standardized mean difference between the groups measured being stastically equivocal-0.02 (95% Cl-0.35,0.31)

Scutellaria Lateriflora (Skullcap)

It has a GABA- binding affinity 42 . A double blind placebo controlled cross over study of healthy individuals (n=19) revealed that skullcap dose-dependently reduced symptoms of anxiety and tension after acute administration compared to that with control 43 .

Mellissa Officinalis (Lemon Balm)

It is shown to cause MAO-inhibition. Also it is found to be a potent invitro inhibitor of rat brain GABA transaminase (GABA-T) ⁴⁴⁻⁴⁵. An RCT with 20 participents who were given single doses of 300,600 and 900 mg of lemon balm or a matching placebo at 7-day intervals revealed that self rating calmness as assessed by Bond Lader mood scales was elevated at the earliest time points by the lowest dose, while alertness was significantly redused at all time points following the highest dose ⁴⁶. A double blind ,placebo controlled ,randomized, balanced cross over experiment

utilizing a standardized product containing lemon balm and valerian extracts in healthy volunteers (n=24) assessed mood and anxiety via a DISS test 47. The results demonstrated that a 600mg dose of the combination ameliorated the negative effects of the DISS the level of anxiety. In a 4 week open, multicenter study in children less than 12 years (n=918) suffering from restlessness and nervous dyskoimesis a combination of valerian and lemon balm preparation (2x2 tablets/day of 160 mg valerian root dry extract (4-5:1) and 80mg lemon balm leaf dry extract (4-6:1) was given. The primary symptoms of dyssomnia and restlessness were reduced from 'moderate/severe' to 'mild' or 'absent ' in most of the children with 70.4% Of the patients with restlessness improving. Both parents and investigators assessed efficacy as 'very good' or 'good' (65.5% and 67.7%, respectively)⁴⁸.

Eschzoltzia California (California Poppy)

It is used by the Native Americans and Ecletic physicians as a sedative, analgesic and anxiolytic ⁴⁹. Authors ⁵⁰ demonstrated that California poppy possess an affinity with benzodiazepine receptors with flumazenil (a benzodiazepine receptor antagonist) suppressing these sedative and anxiolytic effects.

Cymbopogancitratus (Lemon grass)

In 50 participants lemongrass infusion was evaluated for hypnotic and anxiolytic activity ⁵¹ it was found that there was no difference between lemon grass and placebo.

Centellaasciatica (Gotu Kola)

It is used in ayurvedic and traditional pacific medicine for the tratment of anxiety and depression ⁵². In a double blind placebo controlled study ⁵³, 40 healthy participants were randomly assigned to receive either a single 12 g orally administered dose of gotu kola or placebo, it was found that gotu kola significantly attenuated peak ASR amplitude 30 and 60 min after treatment indicating anxiolytic activity in humans.

WithaniaSomnifera (Ashwagandha)

It is classified as rasayana in ayurvedic medicine and it is used to enhance mental and physical performance. It is widely used in the western countries in various nervous system disorders⁵². In an animal study ⁵⁴ it was observed the adaptogenic behavior of ashwagandha in stress – inducing procedure, via the attenuation of stress related parameters (Cortisol levels, mental depression, sexual dysfunction).

BacopaMonniera (Brahmi)

A 12 week RCT using 300 mg of brahmi revealed that there was marked reduction in anxiety by brahmi as compared to placebo⁵⁵.

Gingko Biloba (Maidenhair)

In a RCT using EGb 761 extract (480 mg or 240 mg per day) or placebo for 4 weeks in adults with GAD or adjustment disorder with anxious mood as assessed by DSM-III R using HAM-A as the primary outcome measure and CGI, Erlangen anxiety tension and aggression scale (EAAS) as the secondary outcome measure it was demonstrated that the

HAM-A total scores decreased by -14.3 (+-8.1),-12 (+-9.1),and -7.8(+- 9.2) in the 480 mg per day Ginkobiloba group, the 240 mg per day Ginkobiloba group and the placebo group respectively. It demonstrated specific dose dependent anxiolysis compared with placebo in both higher dose and lower dose group ⁵⁶.

Cratageus Spp. (Hawthorn Berry/Leaf)

In a RCT ⁵⁷ patients were administered 500 mg of hawthorn extract to mildly hypertensive patients, there was a non significant reduction in anxiety as compared to placebo. A double blind ,randomized placebo controlled trial involving adults presenting with mild moderate GAD as assessed via DSM-III R (n=264) were prescribes two tablets containing fixed quantities of Crataegusoxycantha (300 mg), Eschscholtziacalifornica (80 mg) and magnesium (300 mg elemental) twice daily for 3 months ⁵⁸, it was observed that the formula was highly effective in decreasing anxiety as compared to placebo which was determined by HAM-A and subjectively assessed anxiety.

3. CONCLUSIONS

Herbal medications in psychiatry are still under researched. The present review looked at various herbal preparations used in anxiety. The preparations excluding kava have been under used and need further clinical trials including randomized double blind clinical evidence and direct comparisons with anxiolytic drugs to help us understand their efficacy. Most herbal medications may serve as alternatives to traditional anxiolytics in patients who do not tolerate them as they have a favorable safety profile and are free from major side effects. There is also a need for research of herbal medication in the management of various subtypes of anxiety disorders like post traumatic stress disorder and obsessive compulsive disorder. The use of these medications in various age groups and diverse clinical populations is warranted.

4. REFERENCES

- Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity and comorbidity of 12 month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62:617-627.
- 2. Schulz V, Hansel R, Tyler VE. Rational phytotherapy: a physician's guide to herbal medicine. Berlin: Springer Verlag, 2001.
- Elkins G, Rajab MH, Marcus J. Complementary and alternative medicine use by psychiatric inpatients. Psychol Rep 2005; 96:163-166.
- 4. Mischoulon D. Nutraceuticals in psychiatry part 2 : a review of six popular psychotropics. Contemp Psychiatry 2004; 3:1-8.
- 5. Spinella M. The Psychopharmacology of Herbal Medicine: Plant Drugs that alter the mind, brain and behavior. MIT Press, Cambridge, 2011.

- Sarris J. Herbal medicines in the treatment of psychiatric disorders : a systematic review. Phytother Res 2007; 21:703-716.
- 7. Kumar V. Potential medicinal plants for CNS disorders: an overview. Phytother Res 2006; 20:1023-1035.
- Boonen G, Haberlein H. Influence of genuine kavapyrone enantiomers on the GABA-A binding site. Planta Med 1998; 64:504–506.
- Davies LP, Drew CA, Duffield P, Johnston GA, Jamieson DD. Kava pyrones and resin: studies on GABAA, GABAB and benzodiazepine binding sites in rodent brain. PharmacolToxicol 1992; 71:120–126.
- Magura EI, Kopanitsa MV, Gleitz J, Peters T, Krishtal OA. Kava extract ingredients, (+)-methysticin and (+/-)-kavain inhibit voltage-operated Na(+)-channels in rat CA1 hippocampal neurons. Neurosci 1997; 81:345– 351.
- Uebelhack R, Franke L, Schewe HJ. Inhibition of platelet MAO-B by kava pyrone-enriched extract from Piper methysticum Forster (kavakava).Pharmacopsychiatry 1998; 31:187–192.
- 12. Perry N, Perry E. Aromatherapy in the management of psychiatric disorders. CNS Drugs 2003; 20:257–280.
- Sarris J, Teschke R, Stough C, Scholey A, Schweitzer I. Re-introduction of kava (Piper methysticum) to the EU: is there a way forward? Planta Med 2010; 77:107–110.
- Connor KM, Davidson JR. A placebo-controlled study of Kava kava in generalized anxiety disorder. IntClinPsychopharmacol 2002; 17:185–188.
- 15. Witte S, Loew D, Gaus W. Meta-analysis of the efficacy of the acetonic kava-kava extract WS1490 in patients with non-psychotic anxiety disorders. Phytother Res 2005; 19:183–188.
- Cagnacci A, Arangino S, Renzi A, Zanni AL, Malmusi S, Volpe A. Kava-Kava administration reduces anxiety in perimenopausal women. Maturitas 2003; 44:103– 109.
- Boerner RJ, Sommer H, Berger W, Kuhn U, Schmidt U, Mannel M. Kava-Kava extract LI 150 is as effective as opipramol and buspirone in generalised anxiety disorder

 an 8-week randomized, double-blind multicentre clinical trial in 129 out-patients. Phytomedicine 2003; 10:38–49.
- Watkins LL, Connor KM, Davidson JR. Effect of kava extract on vagal cardiac control in generalized anxiety disorder: preliminary findings. J Psychopharmacol 2001; 15:283–286.
- Sarris J, Kavanagh D, Byrne G. Adjuvant use of nutritional and herbal medicines with antidepressants, mood stabilizers and benzodiazepines. J Psychiatr Res 2010; 44:32–41.
- 20. Teschke R. Kava hepatotoxicity—a clinical review. Ann Hepatol 2010; 9:251–265.
- 21. Bensky D, Gamble A. Chinese Herbal Formulas. Eastland Press, Seattle, 1991.

- 22. Singh YN. Potential for kava and St John's wort with drugs. J Ethnopharmacol 2005; 100:108–113.
- Gurley BJ, Gardner SF, Hubbard MA.In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4/5 phenotypes.ClinPharmacolTher 2005; 77:415–426.
- 24. Mathews JM, Etheridge AS, Black SR. Inhibition of human cytochrome P450 activities by kava extract and kavalactones.Drug MetabDispos 2002; 30:1153–1157.
- 25. Stevinson C, Huntley A, Ernst E. A systematic review of the safety of kava extract in the treatment of anxiety. Drug Saf 2002; 25:251–261.
- 26. Bauer R. Relevant hepatotoxicity effects of Kava still need to be proven. Planta Med 2003; 69:971–972.
- Dhawan K, Kumar S, Sharma A. Anti-anxiety studies on extracts of PassifloraincarnataLinneaus. J Ethnopharmacol 2001; 78:165–170.
- Dhawan K, Kumar S, Sharma A. Anxiolytic activity of aerial and underground parts of Passifloraincarnata. Fitoterapia 2001; 72:922–926.
- 29. Dhawan K, Kumar S, Sharma A. Comparative anxiolytic activity profile of various preparations of PassifloraincarnateLinneaus: a comment on medicinal plants' standardization. J Altern Complement Med 2002; 8:283–291.
- Grundmann O, Wang J, McGregor GP, Butterweck V. Anxiolytic activity of a phytochemically characterized Passifloraincarnata extract is mediated via the GABAergic system. Planta Med 2008; 74:1769–1773.
- Sena LM, Zucolotto SM, Reginatto FH, Schenkel EP, De Lima TC. Neuropharmacological activity of the pericarp of Passifloraedulisflavicarpadegener: putative involvement of C glycosylflavonoids. ExpBiol Med Maywood 2009; 234:967–975.
- 32. Akhondzadeh S, Fallah-Pour H, Afkham K, Jamshidi AH, Khalighi-Cigaroudi F. Comparison of Crocus sativus L. and imipramine in the treatment of mild to moderate depression: a pilot double-blind randomized trial. BMC Complement Altern Med 2004; 4:12-16.
- 33. Movafegh A, Alizadeh R, Hajimohamadi F, Esfehani F, Nejatfar M. Preoperative oral Passiflora incarnate reduces anxiety in ambulatory surgery patients: a double-blind, placebo-controlled study. AnesthAnalg 2008; 106:1728–1732.
- 34. Benke D, Barberis A, Kopp S, Altmann K, Schubiger M, Vogt K, Rudolph U, Möhler H. GABA(A) receptors as in vivo substrate for the anxiolytic action of valerenic acid, a major constituent of valerian root extracts. Neuropharmacology 2009; 56:174–181.
- Dietz BM, Mahady GB, Pauli GF, Farnsworth NR. Valerian extract and valerenic acid are partial agonists of the 5- HT5a receptor in vitro. Mol Brain Res 2005; 138:191–197.
- 36. Murphy K, Kubin ZJ, Shepherd JN, Ettinger RH. Valerianaofficinalis root extracts have potent anxiolytic

effects in laboratory rats. Phytomedicine 2009; 17:674–678.

- Ortiz JG, Nieves-Natal J, Chavez P. Effects of Valerianaofficinais extracts on [3H]flunitrazepam binding, synaptosomal [3H]GABA uptake, and hippocampal [3H]GABA release. Neurochem Res 1999; 24(11):1373–1378.
- 38. Sichardt K, Vissiennon Z, Koetter U, Brattstrom A, Nieber K. Modulation of postsynaptic potentials in rat cortical neurons by valerian extracts macerated with different alcohols: involvement of adenosine A(1)-and GABA(A)-receptors. Phytother Res 2007; 21:932–937.
- 39. Trauner G, Khom S, Baburin I, Benedek B, Hering S, Kopp B. Modulation of GABAA receptors by valerian extracts is related to the content of valerenic acid. Planta Med 2008; 74:19–24.
- 40. Jacobs BP, Bent S, Tice JA, Blackwell T, Cummings SR. An internet-based randomized, placebo-controlled trial of kava and valerian for anxiety and insomnia.Medicine (Baltimore) 2005; 84:197–207.
- Fernandez-San-Martin MI, Masa-Font R, PalaciosSoler L, Sancho-Gomez P, Calbo-Caldentey C, FloresMateo G. Effectiveness of Valerian on insomnia: a metaanalysis of randomized placebo-controlled trials. Sleep Med 2010; 11:505–511.
- Awad R, Arnason JT, Trudeau V, Bergeron C, Budzinski JW, Foster BC, Merali Z. Phytochemical and biological analysis of skullcap (Scutellarialateriflora L.): a medicinal plant with anxiolytic properties. Phytomedicine 2003; 10:640–649.
- 43. Wolfson P, Hoffmann D. An investigation into the efficacy of Scutellarialateriflora in healthy volunteers. Alt Ther Health Med 2003; 9:74-77.
- Awad R, Muhammad A, Durst T, Trudeau VL, Arnason JT. Bioassay-guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity. Phytother Res 2009; 23:1075–1081.
- Lopez V, Martin S, Gomez-Serranillos MP, Carretero ME, Jager AK, Calvo MI. Neuroprotective and neurological properties of Melissa officinalis. Neurochem Res 2009; 34:1955–1961.
- 46. Kennedy DO, Scholey AB, Tildesley NT, Perry EK, Wesnes KA. Modulation of mood and cognitive performance following acute administration of Melissa officinalis (lemon balm).PharmacolBiochemBehav 2002; 72:953–964.
- Kennedy DO, Little W, Scholey AB. Attenuation of laboratory-induced stress in humans after acute administration of Melissa officinalis (Lemon Balm). Psychosom Med 2006; 66:607–613.
- 48. Miller LG. Herbal medicinals: selected clinical considerations focusing on known or potential drug herb interactions. Arch Intern Med 1998; 158:2000- 2011.

- 49. Felter HW, Lloyd JU. King's American Dispensatory, Nabu Press 2008.
- 50. Rolland A, Fleurentin J, Lanhers MC, Misslin R, Mortier F. Neurophysiological effects of an extract of Eschscholziacalifornica Cham. (Papaveraceae).Phytother Res 2001; 15:377–381.
- 51. Hosseinzadeh H, Noraei NB. Anxiolytic and hypnotic effect of Crocus sativus aqueous extract and its constituents, crocin and safranal, in mice.Phytother Res 2009; 23:768–774.
- 52. Bone K. A Clinical Guide to Blending Liquid Herbs: Herbal Formulations for the Individual Patient. Churchill & Livingstone: China, 2003.
- Bradwejn J, Zhou Y, Koszycki D, Shlik J. A doubleblind, placebo-controlled study on the effects of Gotu Kola (Centellaasiatica) on acoustic startle response in healthy subjects. J ClinPsychopharmacol 2000; 20:680–684.
- Bhattacharya SK, Muruganandam AV. Adaptogenic activity of Withaniasomnifera: an experimental study using a rat model of chronic stress. PharmacolBiochemBehav 2003; 75:547–555.
- 55. Stough C, Lloyd J, Clarke J. The chronic effects of an extract of Bacopamonniera (Brahmi) on cognitive function in healthy human subjects.Psychopharmacology (Berl) 2001; 156:481– 484.
- 56. Woelk H, Arnoldt KH, Kieser M, Hoerr R. Ginkgo biloba special extract EGb 761((R)) in generalized anxiety disorder and adjustment disorder with anxious mood: A randomized, double-blind, placebo-controlled trial. J Psychiatr Res 2007; 41:472–480.
- 57. Walker AF, Marakis G, Morris AP, Robinson PA. Promising hypotensive effect of hawthorn extract: a randomized double-blind pilot study of mild, essential hypertension. Phytother Res 2002; 16:48–54.
- 58. Hu Z, Yang X, Ho PC. Herb drug interactions–a literature review. Drugs 2005; 65:1239-1282.

Conflict of Interest: None Source of Funding: Nil